Neurobiologie Neue Ansätze zur Heilung verletzter Nerven
Verhindert man die Abschaltung eines Proteins, könnte darin der Schlüssel zur Reparatur des Zentralen Nervensystems liegen.
Verletzungen von Nervenfasern an Gehirn, Rückenmark und Sehnerven haben in der Regel funktionelle Verluste zur Folge, weil die Nervenfasern nicht regenerationsfähig sind. Ein Team des Lehrstuhls Zellphysiologie der RUB um Prof. Dr. Dietmar Fischer hat neue Mechanismen entschlüsselt, die die Regeneration solcher Fasern ermöglicht. Das könnte neue Therapieansätze bei Hirn-, Sehnerv- und Rückenmarksverletzungen eröffnen. Die Forscherinnen und Forscher berichten diese Ergebnisse in der Zeitschrift Nature Communications Biology vom 23. August 2019.
Eingriff in Protein hat erwünschte und unerwünschte Folgen
Gehirn, Rückenmark und Sehnerven werden unter dem Begriff Zentrales Nervensystem zusammengefasst. Die Nervenfasern, sogenannte Axone, können nach Verletzung nicht mehr nachwachsen, sodass Schäden dauerhaft sind. „Man kann die Regenerationsfähigkeit von Nervenzellen des Zentralen Nervensystems zum Teil wiederherstellen, indem man das hemmende Protein PTEN eliminiert“, erklärt Dietmar Fischer. „Allerdings löst ein solcher sogenannter Knockout viele unterschiedliche Reaktionen in den Zellen gleichzeitig aus, die auch häufig zu Krebs führen.“ Aus diesem Grund ist eine direkte Hemmung dieses Proteins für therapeutische Ansätze beim Menschen ungeeignet. Auch ließ sich der ursprünglich postulierte Mechanismus, der der erneuten Regenerationsfähigkeit nach PTEN-Knockout zugrunde liegt, nicht durch weiterführende Studien bestätigen, sodass die Forscher nach alternativen Erklärungen suchten.
Nur die positiven Effekte zulassen
Bei ihren Untersuchungen dieses noch unklaren Mechanismus konnten die Bochumer Wissenschaftlerinnen und Wissenschaftler erstmals zeigen, dass durch den PTEN-Knockout ein Enzym namens GSK3, stark gehemmt wird. Dieses Enzym blockiert seinerseits ein weiteres Protein namens CRMP2. Das bedeutet, der PTEN-Knockout verhindert, dass CRMP2 durch GSK3 gehemmt wird. „Wenn wir diesen zweiten Schritt direkt verhindern, die Hemmung des CRMP2 also unterbinden, können wir den regenerationsfördernden Effekt ebenfalls und spezifischer erreichen“, erklärt Dietmar Fischer. Die Aktivierung von CRMP2 selbst ist, soweit bekannt, nicht krebsauslösend.
Ansätze für neue Medikamente
„Wenngleich wir diese Effekte bisher erst in genetisch veränderten Mäusen und über gentherapeutische Ansätze gezeigt haben, eröffnen uns diese Erkenntnisse verschiedene Möglichkeiten zur Entwicklung von neuen medikamentösen Ansätzen“, erklärt der Neuropharmakologe. Weitere Untersuchungen an seinem Lehrstuhl beschäftigen sich mit diesen Optionen.