Mit mathematischen Modellen haben Bochumer und US-Forschende Prozesse im Gehirn von Mäusen und Menschen nachgebildet. © RUB, Marquard

Synthetische Biologie Kommt Serotonin, geht das Licht aus

Ein gentechnisch modifizierter Rezeptor ermöglicht neue Einblicke.

Forschenden aus Bremen, Bochum, Bonn und Hamburg ist es gelungen, den Blick auf die Wirkungsweise des wichtigen Botenstoffs Serotonin im zentralen Nervensystem maßgeblich zu schärfen. Sie entwickelten neuartige, genetisch enkodierte „sDarken“-Sensoren. Diese melden mit hoher zeitlicher und räumlicher Genauigkeit, wenn der Botenstoff an einen Rezeptor bindet. Ihre Ergebnisse veröffentlichte das Team in der Fachzeitschrift Nature Communications, online veröffentlich am 6. Dezember 2022.

Serotonin ist ein wichtiger Botenstoff im zentralen Nervensystem. Er gehört zur Kategorie der sogenannten Neuromodulatoren und ist für die Informationsübertragung zwischen Nervenzellen im Gehirn und dem gesamten Körper zuständig. Insbesondere die Annahme, Angstzustände und Depressionen würden durch einen Serotoninmangel im Gehirn ausgelöst, rücken den Botenstoff regelmäßig in den Fokus der Wissenschaft. Kausale Zusammenhänge zwischen psychiatrischen Erkrankungen und Serotoninmangel konnten allerdings bisher nicht hinreichend beschrieben werden. Geeignete Methoden fehlten bislang.

Signalaustausch zwischen Nervenzellen besser verstehen

„Verschiedene genetisch kodierte Sensoren wurden in den vergangenen Jahren entwickelt, um die Freisetzung von Neurotransmittern genauer beobachten zu können“, beschreibt Erstautor Martin Kubitschke aus der Arbeitsgruppe Synthetische Biologie an der Universität Bremen, dessen Forschung vom Sonderforschungsbereich 874 unterstützt wurde. „Während andere Teams ihren Fokus auf die Botenstoffe Glutamat, Dopamin, Noradrenalin oder Acetylcholin legten, wollten wir genau verstehen, welche Funktionen Serotonin im Gehirn hat. Als wir mit der Entwicklung der Sensoren begannen, gab es noch keine Möglichkeit, Serotonin im Gehirn live zu beobachten.“

sDarken bei der Arbeit: vergrößerte Ansicht des neu entwickelten Sensors (grün) entlang eines Dendriten einer Nervenzelle – aufgenommen mithilfe der 2-Photonen-Mikroskopie © Kubitschke, M., Müller, M., Wallhorn, L. et al.

Als Gerüst der neuartigen sDarken-Sensoren nutzen die Forschenden einen natürlich vorkommenden, menschlichen 5-HT1A-Rezeptor. Dieser wurde gentechnisch mithilfe eines grün-fluoreszierenden Proteins so verändert, dass sDarken im ungebundenen Zustand grün leuchtet. Der entscheidende Mechanismus dahinter: Sobald Serotonin an die Sensoren andockt, nimmt seine Leuchtkraft ab. Verdunkelung gibt also einen direkten Hinweis auf die Aktivität von Serotonin. Da es sich um einen genetisch enkodierten Sensor handelt, können beliebige Nervenzellentypen oder Hirnregionen mit diesem Sensor zur Visualisierung von Serotonin-Dynamiken versehen werden.

Schnelle Reaktionsgeschwindigkeit, gute Position, hohe Leuchtkraft

Bemerkenswert war die sehr gute Auflösung, die sowohl zeitlich als auch räumlich bei Messungen erzielt werden konnte. „Wir haben mithilfe der Patch-Clamp-Fluorometry festgestellt, dass sDarken bereits in Sekundenbruchteilen auf Änderungen der Serotoninkonzentration reagiert“, beschreibt Prof. Dr. Andreas Reiner von der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum. „Bei der räumlichen Bestimmung der Botenstoff-Aktivität hilft uns, dass sDarken hervorragend in der Membran der Nervenzellen positioniert ist“, ergänzt Prof. Dr. Olivia Masseck, Letztautorin und Leiterin der Arbeitsgruppe Synthetische Biologie an der Universität Bremen. „Die sDarken-Familie funktioniert so hervorragend, dass wir davon ausgehen, in Zukunft sogar Aktivitäten an einzelnen Spines der Nervenzellen sichtbar machen zu können.“

Die Sensoren arbeiten überaus sensibel und spezifisch: Kleinste Konzentrationen von Serotonin führten bereits zu einer optischen Veränderung der Sensoren und konnten so von den Wissenschaftlerinnen und Wissenschaftlern gemessen werden. Bei Gabe anderer Neurotransmitter oder ähnlicher Substanzen reagierte sDarken nicht. Zudem zeigte sich sDarken als äußerst robust, photo- und pH-stabil und erfüllte somit wichtige Voraussetzungen für die Langzeitbildgebung.

„Insgesamt haben wir durch gezielte Mutation drei verschiedene Varianten von sDarken entwickelt, die unterschiedlich empfindlich auf Serotonin reagieren“, erläutert Martin Kubitschke weiter. „Für die Erfassung der sogenannten Volumenübertragung bei Neurotransmittern ist es vorteilhaft, einen Sensor mit einer sehr hohen Affinität zu verwenden. Liegt der Fokus hingegen auf Serotonin-Ausschüttungen über einzelne Synapsen, ist ein Sensor mit geringerer Affinität vorteilhaft. All diese Ausprägungen sind nun durch die sDarken-Familie abgedeckt.“

Ideale Ergänzung bestehender Serotoninsensoren

Ihre Eigenschaften machen sDarken zu einer idealen Ergänzung bestehender Serotoninsensoren und erweitern das Instrumentarium für die Bildgebung der Serotonin-Dynamik. In Zusammenarbeit mit den Forschungsteams der Ruhr-Universität Bochum (Prof. Dr. Andreas Reiner), dem Deutschen Zentrum für Neurodegenerative Erkrankungen in Bonn (Dr. Martin Fuhrmann) und dem Zentrum für Molekulare Neurobiologie in Hamburg (Prof. Dr. Simon Wiegert) konnte bereits gezeigt werden, dass sich mit sDarken im wachen, aktiven Tier sogar feine Details bei der Serotoninausschüttung beobachten lassen. Olivia Masseck ist daher überzeugt: „Die neuen Sensoren werden es langfristig ermöglichen, Aufgabe und Funktionsweise von Serotonin im Gehirn besser zu verstehen.“

Förderung

Die Studie wurde durch den Sonderforschungsbereich (SFB) 874 der Deutschen Forschungsgemeinschaft gefördert. Der SFB 874 „Integration und Repräsentation sensorischer Prozesse“ besteht seit 2010 an der Ruhr-Universität Bochum. Die Forscherinnen und Forscher beschäftigten sich mit der Frage, wie sensorische Signale neuronale Karten generieren, und daraus komplexes Verhalten und Gedächtnisbildung resultiert.

Originalveröffentlichung

Martin Kubitschke et al. Next generation genetically encoded fluorescent sensors for serotonin, in: Nature Communications, 2022, DOI: 10.1038/s41467-022-35200-w

Veröffentlicht

Freitag
16. Dezember 2022
12:05 Uhr

Von

Anke Maes (SFB 874)

Teilen